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\\‘ Abstract

Active-set quadratic programming (QP) methods use a working set to de-
fine the search direction and multiplier estimates. In the method proposed by
Fietcher in 1971, and in several subsequent mathematically equivalent methods,
the working set is chosen to control the inertia of the reduced Hessian, which
is never permitted to have more than one nonpositive eigenvalue. (We call
such methods inertia-controlling.) This paper presents an overview of a generic
inertia-controlling QP method, including the equations satisfied by the search
direction when the reduced Hessian is positive definite, singular and indefinite.
Recurrence relations are derived that define the search direction and Lagrange
multiplier vector through equations related to the Karush-Kuhn-Tucker system.
We also discuss connections with inertia-controlling methods that maintain an
explicit factorization of the reduced Hessian matrix. ( ‘< &) C——

1. Introduction

The quadratic programming (QP) problem is to minimize a quadratic objective func-
tion subject to linear constraints on the variables. The linear constraints may include
an arbitrary mixture of equality and inequality constraints, where the latter may be
subject to lower and/or upper bounds. Many mathematically equivalent formula-
tions are possible, and the choice of form often depends on the context. For example,
in large-scale quadratic programs, it can be algorithmically advantageous to assume
that the constraints are posed in “standard form”, in which all general constraints
are equalities, and the only inequalities are simple upper and lower bounds on the
variables (see, for example, Gill et al. [GMSW87,GMSW8S]).

*The material in this report is based upon research supported by the U.S. Department of Energy
grant DE-FG03-87ER25030, the National Science Foundation grant ECS-8715153, and the Office
of Naval Research contract N00014-87-K-0142.




2 Inertia-Controlling QP Methods

To simplify the notation in this paper, we consider only general lower-bound
inequality constraints; however, the methods to be described can be generalized to
treat all forms of linear constraints. The quadratic program to be solved is thus

e . _ T 1 TH
minimize z)=
Tiprene  #E)=crdarfi (1.1)
subject to Az > 8,

where the Hessian matriz H is symmetric, and A is an m; X n matrix. Any point
z satisfying Az > @ is said to be feasible. The gradient of ¢ is the linear function
g(z) = ¢+ Hz. When H is known to be positive definite, (1.1) is called a cenver
QP; when H may be any symmetric matrix, (1.1) is said to be a general QP.

This paper has two main purposes: first, to present an overview of the theoretical
properties of a certain class of active-set methods for general quadratic programs;
and second, to specify the equations and recurrence relations satisfied by the search
direction and Lagrange multipliers. At each iteration of an active-set method, a cer-
tain subset of the constraints (the working set) is of central importance. The defini-
tive feature of the class of methods considered (which we call inertia-controlling) is
that the strategy for choosing the working set ensures that the reduced Hessian with
respect to the working set (see Section 2.3) never has more than one nonpositive
eigenvalue. In contrast, certain methods for general quadratic programming allow
any number of nonpositive eigenvalues in the reduced Hessian—for example, the
methods of Murray [Mur71) and Bunch and Kaufman [BK80].

To our knowledge, Fletcher’s method [Fle71] was the first inertia-controlling
quadratic programming method, and is derived using the partitioned inverse of the
Karush-Kuhn-Tucker matrix (see Sections 2.3 and 5.1). His original paper and sub-
sequent book [Fle81] discuss many of the properties to be considered here. The meth-
ods of Gill and Murray [GM78] and of QPSOL [GMSW84c] are inertia-controlling
methods in which the search direction is obtained from the Cholesky factorization of
the reduced Hessian matrix. Gould {Gou86) proposes an inertia-controlling method
intended for sparse problems, based on updating certain LU factorizations. Finally,
the Schur-complement QP methods of Gill et al [GMSW84b,GMSW87,GMSW88]
are designed mainly for sparse problems, particularly those that arise in applying
Newton-based sequential quadratic programming (SQP) methods to large nonlin-
early constrained problems.

Under certain conditions, inertia-controlling methods and the methods of Murray
[Mur71] and Bunch and Kaufman {[BK80] generate identical iterates. If the Hessian
happens to be positive definite, the same sequence of iterates is also generated
by a wide class of methods for convex QP (see, e.g., Cottle and Djang [CD79)).
Despite these theoretical similarities, inertia-controlling methods are important in
their own right because of the useful algorithmic properties that follow when the
reduced Hessian has at most one nonpositive eigenvalue. In particular, the system
of equations that defines the search direction has the same structure regardless of
the eigenvalues of the reduced Hessian; this consistency allows certain factorizations
to be recurred efficiently (see Section 6).

We shall consider only primal-feasible QP methods, which require an initial fea-
sible point zo, and thereafter generate a sequence {z;} of feasible approximations




2. Inertia-Controlling Active-Set Methods 3

to the solution of (1.1). If the feasible region of (1.1) is non-empty, a feasible point
to initiate the QP iterations can always be found by solving a linear programming
problem in which the (piecewise linear) sum of infeasibilities is minimized. (This
procedure constitutes the feasibility phase, and will not be discussed here; for de-
tails, see, e.g., Gill et al. [GMSW85].) Despite our restriction, it should be noted
that an inertia-controlling strategy of imposing an explicit limit on the number of
nonpositive eigenvalues of the reduced Hessian can be applied in QP methods that
do not require feasibility at every iteration (e.g., in the method of Hoyle (Hoy86]).

Before proceeding, we emphasize that any discussion of QP methods should dis-
tinguish between theoretical and computational properties. Even if methods are
based on mathematically identical definitions of the iterates, their performance in
practice depends on the efficiency, storage requirements and stability of the associ-
ated numerical procedures. Various mathematical equivalences among QP methods
are discussed in Cottle and Djang [CD79] and Best [Bes84]. In the present paper,
Sections 2—4 are concerned primarily with theory, and Sections 5-6 treat computa-
tional matters,

2. Inertia-Controlling Active-Set Methods

2.1. Optimality conditions

The point z is a local optimal solution of (1.1) if there exists a neighborhood of z
such that p(z) < ¢(Z) for every feasible point £ in the neighborhood. To ensure
that = satisfies this definition, it is convenient to verify certain optimality conditions
that involve the relationship between ¢ and the constraints.

The vector p is called a direction of decrease for ¢ at z if there exists 7, > 0 such
that ¢o(z +ap) < ¢(z) for all 0 < a < 7,. Every suitably small positive step along a
direction of decrease thus produces a strict reduction in ¢. The nonzero vector p is
said to be a feasible direction for the constraints of (1.1) at z if there exists 7, > 0
such that z + ap is feasible for all 0 < a < 74, i.e., if feasibility is retained for every
suitably small positive step along p. If a feasible direction of decrease exists at z,
every neighborhood of z must contain feasible points with a strictly lower value of
@, and consequently z cannot be an optimal solution of (1.1).

The optimality conditions for (1.1) involve the subset of constraints active or
binding (satisfied exactly) at a possible solution z. (If a constraint is inactive at z,
it remains satisfied in every sufficiently small neighborhood of z.) Let Z, (“B” for
“binding”) be the set of indices of the constraints active at the point z, and let Ap
denote the matrix whose rows are the normals of the active constraints. (Both Zy
and Ay depend on z, but this dependence is usually omitted to simplify notation.)

The following conditions are necessary for the feasible point x to be a solution
of (1.1):

g(z) = ATy, for some pp; (2.1a)
ug 2 0; (2.1b)
vTHv > 0 for all vectors v such that Agv =0. (2.1c)
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The necessity of these conditions is usually proved by contradiction: if all three are
not satisfied at an alleged optimal point z, a feasible direction of decrease must
exist, and x cannot be optimal.

The vector pg in (2.1a) is called the vector of Lagrange multipliers for the active
constraints, and is unique only if the active constraints are linearly independent. Let
Zp denote a basis for the null space of Ag, i.e., every vector v satisfying Agv = 0
can be written as a linear combination of the columns of Z5. (Except in the trivial
case, Zp is not unique.) The vector ZLg(z) and the matrix ZTHZ, are called the
reduced gradient and reduced Hessian of ¢ (with respect to Ap). Condition (2.1a) is
equivalent to the requirement that Z7 g(z) = 0, and (2.1c) demands that ZTHZ, be
positive semidefinite. Satisfaction of (2.1a) and (2.1c) is independent of the choice
of Zp.

Various sufficient optimality conditions for (1.1) can be stated, but the following
are most useful for our purposes. The feasible point z is a solution of (1.1) if there
exists a subset Ip of Ty (“P” for positive multipliers and positive definite), with
corresponding matrix Ap of constraint normals, such that

9(z) = Afpp; (2.2)
up > 0; (2.2b)
vTHv > 0 for all nonzero vectors v such that Apv = 0. (2.2¢)

Condition (2.2b) states that all Lagrange multipliers associated with Ap are positive,
and (2.2c) is equivalent to positive-definiteness of the reduced Hessian ZTHZ,,
where Z, denotes a basis for the null space of Ap. When the sufficient conditions
hold, z is not only optimal, but is also locally unique, i.e., ¢(z) < (&) for all feasible
Z in a neighborhood of z (£ # z).

The gap between (2.1) and (2.2) arises from the possibility of one or more zere
Lagrange multipliers and/or a positive semidefinite and singular reduced Hessian.
When the necessary conditions are satisfied at some point z but the sufficient con-
ditions are not, a feasible direction of decrease may or may not exist, so that z is
not necessarily a local solution of (1.1). Verification of optimality in such instances
requires further information, and is in general an NP-hard problem (see Murty and
Kabadi {MK87], Pardalos and Schritger [PS88]) that is equivalent to the copositivity
problem of quadratic programming (see, e.g., Contesse {Con80], Majthay [Maj71]}).

2.2. Definition of an iteration

Given an initial feasible point zq, a generic inertia-controlling QP method (hereafter
called “the algorithm”) generates a sequence {z,} of approximations to the solution
of (1.1) that satisfy

Zp41 = Tk + QkPr,

where p; is a nonzero search direction and a; is a nonnegative scalar steplength. In
the algorithms of interest, p, is always a direction of decrease, and a; is chosen so
that z,4; remains feasible. We usually consider a single iteration (the k-th), and
use unsubscripted symbols to denote quantities associated with iteration k when the
meaning is clear.
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Let g denote g(z), the gradient of ¢ at the current iterate. The following (stan-
dard) terminology is useful in characterizing the relationship between p and ¢:

descent direction if ng < 0;

. direction of positive curvature if pTHp > 0;
isa
P direction of negative curvature  if pTHp < 0;

direction of zero curvature if pTHp = 0.
Because ¢ is quadratic,
@(z + ap) = ¢(z) + ag’p + 3a’p"Hp. (2.3)

This relation shows that every direction of decrease p must be either a descent
direction, or a direction of negative curvature with gTp=0. If ¢Tp < 0 and pTHp >
0, we see from (2.3) that p(z+ap) < ¢(z) forall 0 < a < 7, where 7 = —2¢7p/pTHp.
If ¢Tp < 0 and pTHp < 0, or if gTp = 0 and pTHp < 0, (2.3) shows that ¢ is
monotonically decreasing along p, i.e., ¢(z + ap) < ¢(z) for alla > 0.

2.3. The role of the working set

At each iteration, p is defined in terms of a subset of the constraints, designated as
the working set. The “new” working set is always obtained by modifying the “old”
working set, and the prescription for altering the working set is known for historical
reasons as the active-set strategy.

Although it is sometimes useful to think of the working set as a prediction of the
set of constraints active at the solution of (1.1), we stress that this interpretation
may be misleading. The working set is defined by the algorithm, not simply by the
active constraints. In particular, the working set may not contain all the active
constraints at any iterate, including the solution.

The matrix of normals of constraints in the working set will be called A. Let m
denote the number of rows of A, T the set of indices of constraints in the working
set, and b the vector of corresponding components of 3. We refer to both the index
set 7 and the matrix A as the working set. Let Z denote a matrix whose columns
form a basis for the null space of A; the reduced gradient and reduced Hessian of ¢
with respect to A are then Z7g(z) and ZTHZ. We sometimes denote the reduced
Hessian by H,. A nonzero vector v such that Av = 0 is called a null-space direction,
and can be written as a linear combination of the columns of Z.

In inertia-controlling methods, the working set is constructed to have three im-
portant characteristics:

WS1. Constraints in the working set are active at z;
WS2. The rows of A are linearly independent;

WS3. The working set at zg is chosen so that the initial reduced Hessian is
positive definite.
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Although each of these properties has an essential role in proving that an inertia-
controlling algorithm is well defined (see Sections 3 and 4), some of them also apply
to other active-set methods.

We emphasize that it may not be possible to enforce the crucial property WS3 at
an arbitrary starting point zo if the working set is selected only from the “original”
constraints—for example, suppose that I is indefinite and no constraints are active
at zg. Inertia-controlling methods must therefore include the ability to add certain
“temporary” constraints to the initial working set in order to ensure that property
WS3 holds. Such constraints are an algorithmic device, and do not alter the solution
(see Section 4.4).

This paper will consider only active-set primal-feasible methods that require
property WS1 to apply at the next iterate z + ap with the same working set used
to define p. This additional condition implies that the search direction must be a
null-space direction, so that

Ap=0.

Accordingly, we sometimes use the term null-space methods to describe the methods
of this paper.

A stationary point of the original QP (1.1) with respect to a particular working
set A is any feasible point z for which Az = b and the gradient of the objective
function is a linear combination of the columns of A7, i.e.,

g=c+ Hz = A7, (2.4)

where g = g(z). Since A has full row rank, u is unique. For any stationary point, let
iy (“s” for “smallest”) denote the minimum component of u, i.e., y, = min ;. An
equivalent statement of (2.4) is that the reduced gradient is zero at any stationary
point. The Karush-Kuhn-Tucker (KKT) matrix K corresponding to A is defined

by
Ks(g AT_). (2.5)

When the reduced Hessian is nonsingular, K is nonsingular (see Corollary 3.1).

A stationary point at which the reduced Hessian is positive definite is called a
minimizer, and is the unique solution of a QP in which constraints in the working
set appear as equalities:

minimize Tz + 4zTHz
zERNER (2.6)
subject to Az =b.

The Lagrange multiplier vector for the equality constraints of (2.6) is the vector u
of (2.4). When the reduced Hessian is positive definite, the solution of (2.6) is z — g,
where ¢ solves the KKT system

(2)-(2)
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and u is the associated Lagrange multiplier vector. If z is a stationary point, ¢ = 0.
Given an iterate z and working set A, an inertia-controlling method must be
able to

e determine whether z is a stationary point with respect to A;

e calculate the (unique) Lagrange multiplier vector p at stationary points (see

(24));

e determine whether the reduced Hessian is positive definite, positive semidefi-
nite and singular, or indefinite.

In the present theoretical context, we simply assume this ability; Sections 5-6 discuss
techniques for computing the required quantities.

To motivate active-set QP methods, it is enlightening to think in terms of desir-
able properties of the search direction. For example, since p is always a null-space
direction (i.e., Ap = 0), any step along p stays “on” constraints in the working set.
Furthermore, it seems “natural” to choose p as a direction of decrease for ¢ because
problem (1.1) involves minimizing ¢. We therefore seek to obtain a null-space di-
rection of decrease at every iteration. Such a direction can be computed using the
current working set in the following two situations:

(i) when z is not a stationary point;
(i1) when z is a stationary point and the reduced Hessian is indefinite.

If neither (i) nor (ii) applies, the algorithm terminates or changes the working set
(see Section 2.4).

When (i) holds, the nature of p depends on the reduced Hessian. (The specific
equations satisfied by p are given in Section 4.1; only its general properties are
summarized here.) If the reduced Hessian is positive definite, p is taken as —gq, the
step to the solution of the associated equality-constrained subproblem (see (2.6) and
(2.7)). This vector is a descent direction of positive curvature, and has the property
that @ = 1 is the step to the smallest value of ¢ along p. When the reduced
Hessian is positive semidefinite and singular, p is chosen as a descent direction of
zero curvature. When the reduced Hessian is indefinite, p is taken as a descent
direction of negative curvature.

When (ii) holds, i.e., when z is a stationary point with an indefinite reduced
Hessian, p is taken as a direction of negative curvature.

2.4. Deleting constraints from the working set

When z is a stationary point at which the reduced Hessian is positive semidefinite,
it is impossible to reduce ¢ by moving along a null-space direction. Depending on
the sign of the smallest Lagrange multiplier and the nature of the reduced Hessian,
the algorithm must either terminate or change the working set by deleting one or
more constraints.
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Let z be any stationary point (so that ¢ = ATy), and suppose that u, < 0 for
constraint s in the working set. Let e, be the s-th coordinate vector. Given a vector
p satisfying

AP = Yé€s (‘7 > 0)7
a positive step along p moves “off” (strictly feasible to) constraint s, but remains
“on” the other constraints in A. (The full rank of the working set guarantees that
the equations Ap = v are compatible for any vector v.) It follows that

97p = uTAp = yuTe, = yp, < 0,

so that p is a descent direction. A negative multiplier for constraint s thus suggests
that a null-space descent direction can be found by deleting constraint s from the
working set. However, our freedom to delete constraints is limited by the inertia-
controlling strategy. To ensure that the reduced Hessian has no more than one
nonpositive eigenvalue, a constraint can be deleted only at @ minimizer. (Section 3.3
provides theoretical validation of this policy.)

When z is a minimizer, the action of the algorithm depends on the sign of
us. If py, > 0, the sufficient conditions (2.2) for optimality apply with Z, = I,
and the algorithm terminates. If u, < 0, constraint s is deleted from the working
set, thereby creating at most one nonpositive eigenvalue in the reduced Hessian.
There are two cases to consider. If g, < 0 and constraint s is removed from the
working set, z cannot be a stationary point with respect to the “new” working
set. On the other hand, if 4, = 0, the uniqueness of u implies not only that z
stays a stationary point after removal of constraint s, but also that the multipliers
corresponding to the remaining constraints are unaltered. The algorithm therefore
continues to delete constraints with zero multipliers until either a working set is
found for which u, > 0 or the reduced Hessian ceases to be positive definite. If the
reduced Hessian is positive definite after all constraints with zero multipliers have
been deleted, z satisfies the sufficient optimality conditions (2.2) and the algorithm
terminates. Once the reduced Hessian has ceased to be positive definite, no further
constraints are deleted. :

An inertia-controlling algorithm cannot reach a stationary point with a positive
semidefinite and singular reduced Hessian by adding a constraint (see Lemma 4.5).
Such a point can be reached only by deleting a constraint with a zero multiplier;
the smallest multiplier associated with the working set after deletion must be non-
negative, and the algorithm terminates. In this case, the necessary conditions (2.1)
are satisfied, but z may not be optimal for the original problem (1.1), as discussed
at the end of Section 2.1.

The pseudo-code in Figure 1 summarizes the constraint deletion procedure per-
formed at the beginning of each iteration. The logical variables positive_definite,
positive_semidefinite, singular and indefinite are assumed to be recomputed after
each constraint is deleted; the logical variable complete is used to terminate the
overall algorithm (see Figure 3). The details of the boxed computation (deleting a
constraint from the working set) depend on the particular inertia-controlling algo-
rithm (see Section 5.1). It is important to notice that more than one working set
can be associated with a given iterate z.
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working_set_chosen — false;
repeat until working_set_chosen
if not stationary_point or indefinite then working_set_chosen — true
else
By — min; p;;
if (positive_semidefinite and singular) or y, > 0 then
complete — true;
working_set_chosen — true;
else
if 4, < 0 then stationary_point — false end if

delete constraint s from the working set;

end if
end if
end repeat

Figure 1: Pseudo-code for constraint deletion.

2.5. Adding constraints to the working set

Conceptually, constraints are deleted from the working set before computing p, and
are added to the working set after computing the steplength a. Since p is always
a direction of decrease, the goal of minimizing y suggests that a should be taken
as the step along p that produces the largest decrease in . Furthermore, z + ap is
automatically feasible with respect to constraints in the working set because p is a
null-space direction. However, a may need to be restricted so that the new iterate
remains feasible with respect to constraints not in the working set. A constraint that
is active at z but is not in the working set is called idle; for example, a constraint
that has just been deleted from the working set is idle.

Let i be the index of a constraint not in the working set. The constraint will
not be violated at z 4 ap for any positive step a if a?p >0 If a,-Tp < 0, however,
the constraint will become active at a certain nonnegative step. For every i ¢ T, o;

is defined as
. { (6 - al)aTp  ifalp <O,

2.8
+o00 otherwise. (2.8)

The mazimum feasible step ar (often called the step to the nearest constraint) is
defined as @y = mina;. The value of ay is zero if and only if alp < 0 for at least
one idle constraint i. If ay is infinite, the constraints do not restrict positive steps
along p.

In order to retain feasibility, & must satisfy a < ap. If the reduced Hessian is
positive definite, the step of unity along p has special significance, since p in this
case is taken as —q of (2.7), and ¢ achieves its minimum value along p at o = 1
(see (2.6)). When the reduced Hessian is either indefinite or positive semidefinite
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and singular, ¢ is monotonically decreasing along p (see Section 2.2). Hence, the
nonnegative step a along p that produces the maximum reduction in ¢ and retains
feasibility is
min(1,ar) if ZTH Z is positive definite;
a =
ap otherwise.

In order for the algorithm to proceed, a must be finite. If @ = 0o, ¢ is unbounded
below in the feasible region, (1.1) has an infinite solution, and the algorithm termi-
nates.

Let r denote the index of a constraint for which ar = a,. The algorithm requires
a single value of r, so that some rule is necessary in case of ties—for example, r may
be chosen to improve the estimated condition of the working set. (Several topics
related to this choice are discussed in Gill et al. [GMSW].) When a = ap, the
constraint with index r becomes active at the new iterate. In the inertia-controlling
methods to be considered, a, is added to the working set at this stage of the iteration,
with one exception: a constraint is not added when the reduced Hessian is positive
definite and ay = 1. In this case, z + p is automatically a minimizer with respect
to the current working set, which means that at least one constraint will be deleted
at the beginning of the next iteration (see Section 2.4).

Assuming the availability of a suitable direction of decrease p, the pseudo-code
in Figure 2 summarizes the constraint addition procedure. As in Figure 1, details
of the boxed computation (adding a constraint to the working set) depend on the
particular inertia-controlling algorithm (see, e.g., Sections 6.1 and 6.2).

ar — maximum feasible step along p (to constraint r);
hit.constraint — not positive_definite or oy < 1;
if hit_constraint then a — a, else a — 1 end if;
if @« = oo then stop
else
T —r+ ap;
if hit_constraint then

add constraint r to the working set

end if
end if

Figure 2: Pseudo-code for constraint addition.

The following lemma shows that all working sets have full rank in a null-space
inertia-controlling method.

Lemma 2.1. Assume that the initial working set has full rank. For the active-set
QP algorithm just described, any constraint added to the working set must be linearly
independent of the constrainlz in the working set.

————— ]
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Proof. A constraint a, can be added to the working set A only if aIp < 0 (see
(2.8)). If a, were linearly dependent on the working set, we could express a, as
a, = ATr for some nonzero vector r. However, p is a null-space direction, and the
relation Ap = 0 would then imply that aTp = rTAp = 0, a contradiction. B

Putting together the deletion and addition strategies, Figure 3 summarizes the
general structure of the inner loop of an inertia-controlling QP method. The logical
variable complete indicates whether the method has terminated.

complete — false;

repeat until complete
execute constraint deletion procedure (Figure 1);
if not complete then

compute p;

execute constraint addition procedure (Figure 2);
end if
end repeat

Figure 3: Structure of iteration loop.

3. Theoretical Background

This section summarizes theoretical results used in proving that inertia-controlling
methods are well defined.

3.1. The Schur complement

Given the partitioned symmetric matrix

T:(%”?), (3.1)

where M is nonsingular, the Schur complement of M in T is denoted by T/M, and

is defined as
T/IM=G-WM'WT, (3.2)

We sometimes refer simply to “the” Schur complement when the relevant matrices
are evident.

An important application of the Schur complement is in solving Ty = d when T
has the form (3.1) and is nonsingular. Let ihe right-hand side d and the unknown
y be partitioned Lo conform with (3.1):

i=(a) ()

3—'—
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Then y may be obtained by solving (in order)

Mw = d, (3.3a)
(T/M)yz = d; - Ww (3.3b)
My, = dy - WTy,. (3.3c)

Let T be any symmetric matrix. We denote by i,(T), i,(T') and .(T) respec-
tively the (nonnegative) numbers of positive, negative and zero eigenvalues of T.
The inertia of T—denoted by In (T')—is the associated integer triple (ip,1,,i;). For
any suitably dimensioned nonsingular matrix §, Sylvester’s law of tnertia states that

In(T) = In(STTS). (3.4)

An important relationship holds among the inertias of T, M and the Schur comple-
ment (3.2):
In(T)=In(M)+ In(T/M) (3.5)

(see Haynsworth [Hay68]).

An analogous Schur complement can be defined for a nonsymmetric matrix T.
When M is singular, the generalized Schur complement is obtained by substituting
the generalized inverse of M for M~! in (3.2), and by appropriate adjustment of
(3.3). The “classical” Schur complement (3.2) and its properties are discussed in de-
tail by Cottle [Cot74]. For further details on the generalized Schur complement, see
Carlson, Haynsworth and Markham [CHM74] and Ando [And74]. Carlson [Car86)
gives an interesting survey of results on both classical and generalized Schur com-
plements, along with an extensive bibliography.

3.2. The KKT matrix and the reduced Hessian

The eigenvalue structure of the reduced Hessian determines the logic of an inertia-
controlling method, and the KKT matrix of (2.5) plays a central role in defining the
search direction. The following theorem gives an important relationship between
the KKT matrix and the reduced Hessian ZTH Z.

Theorem 3.1. Let H be an n X n symmetric matriz, A an m X n matriz of full
row rank, I the KKT matriz of (2.5), and Z a null-space basis for A. Then

In(K)=In ( i AT ) = In(ZTH Z) + (m,m,0).

Proof. See Gould {Gou85]. Since every basis for the null space may be written
as ZS§ for some nonsingular matrix S, Sylvester’s law of inertia (3.4) implies that
the inertia of the reduced Hessian is independent of the particular choice of Z. We
emphasize that the full rank of A is essential in this result. §

Corollary 3.1. The KKT matriz K is nonsingular if and only if the reduced Hes-
sian ZTHZ is nonsingular. 3§
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3.3. Changes in the working set

The nature of the KKT matrix leads to several results concerning the eigenvalue
structure of the reduced Hessian following a change in the working set.

Lemma 3.1. Let M and M, denote symmetric matrices of the following form:

T T
M= A B and M, = "B, )
B B,

where B, is B with one additional row. (The subscript “4” is intended to emphasize
which matriz has the eztra row.} Then ezactly one of the following cases holds:

(a) ip(My) = ip(M) + 1, in(M,) = in(M) and i:(M,) = i(M);
(b) ip(M,) = ip,(M) + 1, in(M,) = in(M) +1 and i,(M,) = i,(M) - 1;
() ip(My) = ip(M), in(M,) = in(M) + 1 and i,(M,) = in(M);
(d) (M) = (M), in(M,) = in(M) and i,(M,) = i.(M) + 1.

Proof. It is sufficient to prove the result for the case when

3+=(3), (3.6)

where b7 is a suitably dimensioned row vector. If the additional row of B, occurs
in any position other than the last, there exists a permutation IT (representing a
row interchange) such that IT B, has the form (3.6). Let

P H BT b
P = ( ) , which gives PM,PT=| B . 3.7)
n oT

Because P is orthogonal, PM, PT is a similarity transform of M, , and has the same
eigenvalues (see Wilkinson (Wil65], page 7). Thus the lemma applies equally to M,
and PM, PT.

When B, has the form (3.6), standard theory on the interlacing properties of
the eigenvalues of bordered symmetric matrices states that

A;ZAIZ’\;z"'Z’\lZ’\Z\\-I’

where £ is the dimension of M, and {);} and {\}} are the eigenvalues of M and M,
respectively, in decreasing order (see, e.g., Wilkinson [Wil65], pages 96-97). The
desired results follow by analyzing the consequences of these inequalities. §

By combining the general interlacing result of Lemma 3.1 with the specific prop-
erties of the KKT matrix from Theorem 3.1, we derive the following lemma, which
applies to either adding or deleting a single constraint from the working set.
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Lemma 3.2. Let A be an m X n matriz of full row rank, and let A, denote A
with one additional linearly independent row (so that A, also has full row rank).
The matrices Z and Z, denote null-space bases for A and A,, and Hz and Hgz,
denote the associated reduced Hessian matrices ZTHZ and ZTHZ ++ (Note that the
dimension of Hz, is one less than the dimension of Hz.) Define K and K, as

T T
K = B A and K, = A ’
A A,

where H is an n X n symmetric matriz. Then exactly one of the following cases
holds:

(a) ip(Hz, ) =ip(Hz) -1, t2(Hz,) = in(Hz) - 1 and i:(Hz,)=1i.(Hz)+ 1;
(b) ip(Hz,) = ip(Hz) = 1, in(Hz,) = in(Hz) and i.(Hz,) = i-(Hz);
(c) ip(Hz,) = ip(Hz), in(Hz,) = in(Hz) - 1 and i(Hz,) = i;(Hz);
(d) ip(Hz,) = ip(Hz), in(Hz,) = in(Hz) and i(Hz,) = i.(Hz) - 1.

Proof. Since A and A, have full row rank, Theorem 3.1 applies to both K and
K, and gives ip)(K) = i,(Hz) + m, ip(K,) = ip(Hz,) + m + 1, in(K) > m and
in(K,) 2> m+ 1. Substituting from these relations into the four cases of Lemma 3.1,
we obtain the desired results. §

When a constraint is added to the working set, A and A, correspond to the
“old” and “new” working sets. Lemma 3.2 shows that adding a constraint to the
working set either leaves unchanged the number of nonpositive eigenvalues of the
reduced Hessian, or decreases the number of nonpositive eigenvalues by one. The
following corollary lists the possible outcomes of adding a constraint to the working
set.

Corollary 3.2. Under the same assumptions as in Lemma 3.2:

(a) if ZTHZ is positive definite and a constraint is added to the working set,
ZTHZ, must be positive definite;

(b) if ZTHZ is positive semidefinite and singular and a constraint is added to
the working set, ZZ'H Z, may be positive definite or positive semidefinite and
singular;

(c) if ZTHZ is indefinite and a constraint is added to the working set, ZTH Z,
may be positive definite, positive semidefinite and singular, or indefinite. 3

For a constraint deletion, on the other hand, the roles of A and A, are reversed
(K, is the “old” KKT matrix and K is the “new”). In this case, Lemma 3.2 shows
that deleting a constraint from the working set can either leave unchanged the
number of nonpositive eigenvalues of ZTH Z, or increase the number of nonpositive
eigenvalues by one.
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If constraints are deleted only when the reduced Hessian is positive definite,
Lemma 3.2 validates the inertia-controlling strategy by ensuring that the reduced
Hessian will never have more than one nonpositive eigenvalue following a deletion
and any number of additions. Accordingly, when the reduced Hessian matriz is
hereafter described as “indefinite”, it has a single negative eigenvalue, with all other
eigenvalues positive; and when the reduced Hessian matriz is described as “singular”,
it has one zero eigenvalue, with all other eigenvalues positive.

3.4. Relations involving the KKT matrix
We now prove several results that will be used in Section 4. It should be emphasized

that the following lemma makes no assumption about the nonsingularity of K.

Lemma 3.3. Let Aand A, be main’ces with linearly independent rows, where A, is
A with a row added in position s. Let K, Z, K, and Z, be defined as in Lemma 3.2.
If K, is nonsingular, then

In(K)+(1,1,0) = In(K4) + In(~0),
where o is the (n + 3)-th diagonal element of K71, i.e., 0 = eI, K e, ,,.

Proof. Consider the matrix

K, e
Kaus = ( eT: n+s ) ,
n+s

where e, , is the (n + s)-th coordinate vector. Using definition (3.2) of the Schur
complement,
Kawg/ Ky = —o0.

Since K, is nonsingular, relation (3.5) applies to K.z, and we have
In(Kyg) = In(K,)+ In(-0). (3.8)

Because of the special forms of K and K, it is possible to obtain an expression
that relates the inertias of K and Kaug. Let the new row of A, be row s, and
denote the corresponding n-vector by a,. As in (3.7), a permutation matrix P can
be symmetrically applied to Kaug so that row s becomes the last row in the upper
left square block of size n + m + 1. Further permutations lead to the following
symmetrically reordered version of K ug:

0 1 a 0
N N - 1 0 0 0
Kang = PTK yyu P =
 aug s aT 0 H AT |’
0 0 A
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where P is a permutation matrix. Since K aug i5 @ symmetric permutation of Kayy,
the two matrices have the same eigenvalues, and hence

In(Kpug) = In(K ayg)- (3.9)

The 2 x 2 matrix in the upper left-hand corner of K aug (denoted by E) is non-
singular, with eigenvalues +1, and satisfies

In(E)=(1,1,0) with E-1=E=(‘1’ ;)

Using (3.2), it can be verified algebraically that the Schur complement of E in K aug
is simply K:

N T 0N[0 1\ [a O
Rug/E=K-{ % s =K.
we/E = K (o o/\10 0 0

Applying (3.5) to K aug and using (3.9), we obtain
In(Kaug) = In(E) + In (K sug/ E) = (1,1,0) + In(K). (3.10)
Combining (3.8) and (3.10) gives the desired result. &

Corollary 3.3. Let K and K, be defined as in Lemma 3.3. Consider the nonsin-
gular linear system

K, ( y ) = engan (3.11)

w

where y has n components. Let w, denote the s-th component of w. (Since the
solution of (3.11) is column n+ s of K[}, w, =0 of Lemma 3.3.) Then:

(a) if ZTH Z is positive definite and Zf]! Z, is positive definite, w, must be neg-
ative;
(b) if ZTH Z is singular and ZTH Z, is positive definite, w, must be zero;
(¢) if ZTHZ is indefinite and ZT HZ, is positive definite, w, must be positive. §
Lemma 3.4. Let K and K, be defined as in Lemma 3.3, with the further assump-

tions that ZIH Z, is positive definite and ZTH 7 is indefinite. Let z denote the first
n components of the solution of

(-(E))() e

where a? is the additional row of A,. Then alz < 0.

*’“
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Proof. Because ZTH Z is indefinite, K is nonsingular (see Theorem 3.1). The
vectors z and t of (3.12) are therefore unique, and satisfy

Hz+ ATt—a,=0, Az=0. (3.13)

We now relate the solutions of (3.12) and (3.11). Because of the special structure
of K,, the unique solution of (3.11) satisfies

Hy+ ATw, + a,w, =0, Ay=0, az'y =1, (3.14)

where w, denotes the subvector of w corresponding to A, and w, is the component
of w corresponding to a,. Corollary 3.3 implies that w, > 0. Comparing (3.14)
and (3.13), we conclude that y = w,z. Since aly = 1, this relation implies that
alz = —1/w, < 0, which is the desired result. B

4. Theoretical Properties of Inertia-Controlling Methods

In this section we give the equations used to define the search direction after the
working set has been chosen (see Section 2.4), and then prove various properties of
inertia-controlling methods. When the reduced Hessian is positive definite, choosing
p as —q from the KKT system (2.7) means that a = 1 (the step to the minimizer of
¢ along p) can be viewed as the “natural” step. In contrast, if the reduced Hessian
is singular or indefinite, the search direction needs to be specified only to within
a positive multiple. Since ¢ is monotonically decreasing along p when the reduced
Hessian is not positive definite, the steplength « is determined not by ¢, but by the
nearest constraint (see Section 2.5). Hence, multiplying p by any positive number v
simply divides the steplength by v, and produces the identical next iterate.

4.1. Definition of the search direction

The mathematical specification of the search direction depends on the eigenvalue
structure of the reduced Hessian, and, in the indefinite case, on the nature of the
current iteration.

Positive definite. If the reduced Hessian is positive definite, the search direction
p is taken as p = —q, where q is part of the solution of the KKT system (2.7):

Q- e

An equivalent definition of p, which will be relevant in Sections 6.1 and 6.2,
involves the null-space equations:

p=Zp;, where ZTHZp, = -Z7.

Singular. If the reduced Hessian is singular and the algorithm does not terminate,
we shall show later that z cannot be a stationary point (see Lemma 4.5). The
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search direction p is defined as 8p, where p is the unique nonzero direction

satisfying
T ~
(”A)(”)=o (4.2)
A v

and f is chosen to make p a descent direction. Equivalently, p is defined by
p=Zpz, where ZTHZp, =0, |lpzll #0.

This vector p; is a multiple of the single eigenvector corresponding to the zero
eigenvalue of ZTHZ.

Indefinite. If the reduced Hessian is indefinite, it must be nonsingular, with exactly

4.2,

one negative eigenvalue. In this case, p is defined in two different ways.

First, if the current working set was obtained either by deleting a constraint
with a negative multiplier from the immediately preceding working set, or by
adding a constraint, then p is taken as ¢ from the KKT system (2.7), i.e., p

satisfies ’
A r 0

Second, if the current working set is the result of deleting a constraint with
a zero multiplier from the immediately preceding working set, let a, denote
the normal of the deleted constraint. The current point is still a stationary
point with respect to A (see Section 2.4), and hence g = ATy for some vector
u. The search direction p is defined by

H AT a, P g
A v |=]0], (44)
af w, 1

which can also be written as
H AT o, P 0
A w |=101], (4.5)
az' w, 1

where w = v — p. The KKT matrix including @, must have been nonsingular
to allow a constraint deletion, so that the solution of either (4.4) or (4.5) is
unique, and Corollary 3.3 implies that w, > 0.

Intermediate iterations

Various properties of inertia-controlling methods have been proved by Fletcher and
others (see, e.g., [Fle71,Fle81,GM78,Gou86)). In this section, we use the Schur-
complement results of Section 3 to analyze certain sequences of iterates in an inertia-
controlling method. The initial point z¢ is assumed to be feasible; the initial working
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set has full row rank and is chosen so that the reduced Hessian is positive definite
(see Section 4.4).

A recurring difficulty in describing inertia-controlling methods is that one cannot
always refer without ambiguity to “the” working set associated with an iterate. The
following terminology is intended to characterize the relationship between an iterate
and a working set. Let r be an iterate of an inertia-controlling method and 4 a
valid working set for z, so that the rows of A are linearly independent normals of
constraints active at z. As usual, Z denotes a null-space basis for A. We say that

standard if ZTH Z is positive definite;
nonstandard  if ZTH Z is not positive definite;

a minimizer if ZTg = 0 and ZTH Z is positive definite;
intermediate  if z is not a minimizer.

In each case, the term requires a specification of A, which is omitted only when its
meaning is obvious. We stress that the same point can be, for example, a minimizer
with respect to one working set A, but intermediate with respect to another (usually,
A with one or more constraints deleted).

We now examine .he properties of intermediate iterates that occur after a con-
straint is deleted at one minimizer, but before the next minimizer is reached. Each
such iterate is associated with a unique most recently deleted constraint. Consider a
sequence of consecutive intermediate iterates {zx}, k = 0,..., N, with the following
three features:

I1. z is intermediate with respect to the working set Aj;

I2. Agis obtained by deleting the constraint with normal a. from the working
set A., so that zo is a minimizer with respect to A,;

I3. 24,1 < k < N, is not a minimizer with respect to any valid working set.

At zi, pi is defined using A, as A (and, if necessary, a, as a,) in (4.1), (4.2), (4.3)
or (4.4). (Note that (4.4) may be used only at zo.)

Let Z. denote a basis for the null space of A,. For purposes of this discussion,
the position of al in A, is irrelevant, and hence we assume that A, has the form

A, = ( A,}’ ) (4.6)

a,

Because of the inertia-controlling strategy, the reduced Hessian ZTHZ, must be
positive definite. Relation (4.6) implies that

pTHp > 0 for any nonzero p such that Aop = 0 and alp=0. 4.7)

If the iterate following z is intermediate and the algorithm continues, a; is the
step to the nearest constraint, and a constraint is added to the working set at each
zi, k > 1. If a constraint is added and z; is standard, it must hold that a; < 1.
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(Otherwise, if ax = 1, 24 + pi is a minimizer with respect to A, and the sequence
of intermediate iterates ends.) Let a, denote the normal of the constraint added to
A at 244, to produce Agyq, so that the form of Agy, is

T
A ap
Ak+1 = ( T ) = . . (4.8)
ak :
of
We now prove several lemmas leading to the result that the gradient at each
intermediate iterate z; may be expressed as a linear combination of A; and a.. For
simplicity, whenever possible we adopt the convention that unbarred and barred
quantities are associated with intermediate iterates k and k + 1 respectively.

Lemma 4.1. Let g and A denote the gradient and working set at an intermediate
iterate z where p is defined by (4.1)-(4.3), and a. is the most recently deleted con-
straint. Let £ = z + ap, and assume that constraint a is added to A at &, giving the
working set A. If there ezist a vector v and a scalar v, such that

g= ATy ~ vea,, with v, >0, (4.9)
then

(a) §, the gradient at , is also a linear combination of AT and a,;

(b) there erist a vector b and scalar v, such that
j=AT5 - b,0,, with %, >0. (4.10)
Proof. Because ¢ is quadratic,
9(z + ap) = g+ aHp. (4.11)

We now consider the form of § for the three possible definitions of p.

When the reduced Hessian is positive definite, p satisfies g + Hp = A%y, so that
Hp = —g + ATu. Substituting from this expression and (4.9) in (4.11), we obtain
(a) from

dg=9+alp=(1-a)g+aATy = ATA - ¥,a,,

where A = (1-a)v+ap and 3, = (1-a)v,. Since a < 1, (b) is obtained by forming
% from A and a zero component corresponding to row a7 in A.

When the reduced Hessian is singular, p is defined as 8p, where § # 0 and p
satisfies (4.2), so that Hp = —GATv. Substituting from this relation and (4.9) in
(4.11) gives

dg=g+alHp=g-afATv = AT(v - afv) - v,a,,

and (4.10) holds with &, = v. and  formed by augmenting A = v — afv with a zero
component as above.
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Finally, when the reduced Hessian is indefinite and the search direction is defined
by (4.3), Hp = g— ATu. Substituting from this relation and (4.9) in (4.11), we obtain

§=g+alp=g+a(g- ATy
= (1+a)g - aATy
=(1+a)ATv—aATy - (1 + a)v.a.
= ATA - §,q.,
where A = (1+ a)v ~ ap and &, = (1 + a)v,. Since v, > 0, ¥, must be positive, and
g has the desired form. §

To begin the induction, note that if the multiplier associated with a, at zg is
negative, then, from (4.6),

go = Alp= A(T)'I‘o ~ vla,, (4.12)

where v2 = —u, > 0. The next lemma treats the other possibility, that a zero mul-
tiplier was associated with a,, i.e., that zg is a stationary point with respect to Ap.
The situation is possible only if the reduced Hessian associated with A is indefinite.
(If it were positive definite, the algorithm would delete further constraints; if it were
singular, the algorithm would terminate at z;.)

Lemma 4.2. Assume that the reduced Hessian is indefinite at the first intermediate
iterate zo, and that a zero multiplier is associated with a,. Then

9P =0, plHp, <0 and alp, > 0. (4.13)

If ag > 0, then g; = g(zo + appy) may be written as a linear combination of a. and
the rows of Ag. Moreover, there erist a vector v' and scalar v} such that

N = A{vl - vlat’ (4'14)
with v1 > 0.

Proof. Since a zero multiplier is associated with a., z¢ is a stationary point with
respect to Ao, i.e., go = Adio. Multiplying by pZ shows that pg, = 0. Using (4.5),

po satisfies
Hpo = —Ag.wo - w,.aq,, (4‘15)
where w, > 0, so that
PeHp, = —w.aT pg. (4.16)
Rewriting the definition (4.5) of p as
H Ag‘ po _a.
= w, ith w, > 0, 4.17
(% #)(5) () v r

Lemma 3.4 implies that aTpy > 0. It then follows from (4.16) that pZHp, < 0,
which completes verification of (4.13).

‘——
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Now we assume that ap > 0. Since g, = go + aoH po, (4.15) and the relation

go = Adpq give
91 = go + aoH po = AGho — a0 AGwg ~ ag,a, = AA - vla,,

where v! = aow. and A = go — agwo. Since ap > 0 and w. > 0, v! is strictly
positive, and g; has the desired form. If constraint ag is added to the working set
at the new iterate, g; can equivalently be written as in (4.14) by forming v! from
an augmented version of A as in Lemma 4.1. @

We are now able to derive some useful results concerning the sequence of inter-
mediate iterates.

Lemma 4.3. Given a sequence of consecutive intermediate iterates {zy} satisfying
properties 11-13, the gradient gi satisfies (4.9) for k > 0 if a constraint with a
negative multiplier is deleted at zo, and for k > 1 if a constraint with a zero multiplier
s deleted at xo and ap > 0.

Proof. If a constraint with a negative multiplier is deleted at z, (4.9) holds at z¢
by definition (see (4.12)). If a constraint with a zero multiplier is deleted at zo and
ap > 0, Lemma 4.2 shows that (4.9) holds at z;. Lemma 4.1 therefore applies at all
subsequent intermediate iterates, where we adopt the convention that v increases
in dimension by one at each step to reflect the fact that A; has one more row than
A1 B

Lemma 4.4. Let {z;} be a sequence of consecutive intermediate iterates satisfying
properties 11-13. Given any vector p such that Ayp = 0, the following two properties
hold for k > 0 if a constraint with a negative multiplier s deleted at zq, and for
k > 1 if a constraint with a zero multiplier is deleted at zq and ag > 0:

(a) ifgip <0, then aTp > 0;
(b) ifalp > 0, then glp < 0.

Proof. We know from part (b) of Lemma 4.3 that, for the stated values of k, there
exist a vector »* and positive scalar v* such that

T,k k
9k = Akv - v.a,.

Therefore, g{p = —v¥aTp and the desired results are immediate. 1

Lemma 4.5. Assume that {zx}, k = 0,...,N, is a sequence of consecutive inter-
mediate iterates satisfying 11-13, where each z;,, 1 < k < N, is not a stationary
point with respect to Ax. Assume further that ag > 0 if a zero multiplier is deleted
at zo, and that ay is the step to the constraint with normal ay, which is added to
Ay to form the working set Ayyy. Let Ty41 = Ty + anpy.

(a) If zn41 13 a stationary point with respect to Ay 41, then ay is linearly dependent
on AL and a., and zZT L H Z 41 18 positive definite;

—— e
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(b) If ay is linearly dependent on AL and a., then zy41 is a minimizer with
respect to An41.

Proof. By construction, the working set A, has full row rank, so that a, is linearly
independent of the rows of 4g. We know from part (b) of Lemma 4.3 that

gk = A{v” ~vka,, k=1,...,N, (4.18)

where v¥ > 0. Since we have assumed that z, is not a stationary point with respect
to Ax for any 1 < k < N, (4.18) shows that aT is linearly independent of Aj.
Furthermore, part (a) of Lemma 4.1 implies that there exists a vector A such that

gn41 = ATA - vlta,, (4.19)

where v¥+1 > 0. It follows from the linear independence of al and Ay that zy4;
cannot be a stationary point with respect to the “old” werking set Ay.
To show part (a), assume that zy4; is a stationary point with respect to Ay,
(which includes ay), i.e.,
Insr = ALp + Bty (4.20)

where uy (the multiplier associated with ay) must be nonzero. Equating the right-
hand sides of (4.19) and (4.20), we obtain

ATA— v, = ATy 4 ppa,. (4.21)

Since v*! # 0 and uy # 0, this expression implies that we may express a, as a
linear combination of A£ and ay, where the coefficient of ay is nonzero:

a, = ATE + yay, with 4= —;L:,-% #0 (4.22)

and § = (1/v*)(A - p).

Stationarity of zy41 with respect to Ay4) thus implies a special relationship
among the most recently deleted constraint, the working set at z, and the newly
encountered constraint. Any nonzero vector p in the null space of Ay41 satisfies

N

A
Aypp = ( T ) p=0. (4.23)

For any such p, it follows from the structure of Ay4, (see (4.8)) that Agp = 0,
and from (4.22) that aTp = 0; hence, p lies in the null space of A,. Since ZTHZ,
is positive definite (i.e., (4.7) holds), we conclude that pTHp > 0 for p satisfying
(4.23). Thus, the reduced Hessian at zy4; with respect to Ay4 is positive definite,
and zy41 is 2 minimizer with respect to An41.

To verify part (b), assume that ay is linearly dependent on Ay and a,, i.e.,
that ay = ATB + a.B., where 8. # 0. Simple rearrangement then gives a. =
(1/B.)ay ~ (1/8.)AT 8. Substituting in (4.19), we obtain
pNH pN+1

g~ g AP

gn41 = A£,\ -
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which shows that zy4; must be a stationary point with respect to Ay.y. Positive-
definiteness of the reduced Hessian follows as before, and hence z 4 is 2 minimizer
with respect to Ay4+;. 8

Lemma 4.5 is crucial in ensuring that adding a constraint in an inertia-controlling
algorithm cannot produce a stationary point where the reduced Hessian is not pos-
itive definite.

4.3. Properties of the search direction

When the reduced Hessian is positive definite, it is straightforward to show that
the search direction possesses the feasibility and descent properties discussed in
Section 2.3.

Theorem 4.1. Consider an iterate z and a valid working set A such that ZTHZ
is positive definite. [f p as defined by (4.1) is nonzero, then p is a descent direction.
Furthermore, if constraint a, is the most recently deleted constraint, it also holds
that aTp > 0.

Proof. See Fletcher [Fle81, page 89]. Writing out the equations of (4.1), we have
g+ Hp=ATy and Ap=0.

Multiplying the first equation by pT gives g7p = —pTHp. Since p = Zp, for some
nonzero p, and ZTH Z is positive definite, pTH p must be strictly positive, and hence
g¢Tp < 0. If constraint a, is the most recently deleted constraint, £ must be part of
a sequence of intermediate iterates satisfying properties I11-13 (Section 4.2), where
a negative multiplier was deleted at the first point of the sequence. Lemma 4.4 thus
shows that an >0. &

We now wish to verify that the search direction at a nonstandard iterate (which
must be intermediate) possesses the desired properties. Lemma 4.2 shows that p is
a direction of negative curvature when a constraint with a zero multiplier has just
been deleted. The following theorems treat the two possible situations when the
most recently deleted constraint has a negative multiplier.

Theorem 4.2. When the reduced Hessian is singular at a nonstandard iterate z,
the search direction is a descent direction of zero curvature. If a. is the most recently
deleted constraint, it also holds that aTp > 0.

Proof. When ZTH Z is singular, p is defined by (4.2) and hence satisfies Hp =
~BATy. Multiplying this relation by p7, we obtain pTHp = 0, which verifies that p
is a direction of zero curvature. A nonstandard 'terate z must be part of a sequence
of intermediate iterates satisfying properties [1-I3. We know from Lemma 4.5 that
any such z cannot be a stationary point, and hence g7p # 0. Thus, the sign of 8
can always be chosen so that g7p < 0. Lemma 4.4 then implies that aTp > 0, where
a, is the normal of the most recently deleted constraint. J

————— ]
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Theorem 4.3. When the reduced Hessian is indefinite at a nonstandard iterate and
the search direction is defined by (4.3), p is a descent direction of negative curvature.
If a. is the most recently deleted constraint, it also holds that aTp > 0.

Proof. Since p satisfies Hp + ATy = g and Ap = 0, it follows that
pTHp = ¢Tp. (4.24)

As in Theorem 4.2, z must be part of a sequence of intermediate iterates satisfying
properties [1-13. Furthermore, Lemma 4.3 shows that

g= ATy — v,a., with v, >0,

where a. is the normal of the most recently deleted constraint. Substituting for ¢
in (4.3) and rearranging, we see that p satisfies

<(0)-027)0)-(7)

w A w 0

and it follows from Lemma 3.4 that afp > 0. This property implies first (from

Lemma 4.4) that ¢7p < 0, and then (from (4.24)) that pTHp < 0 as required. I
If ar = 1 at a standard iterate, a constraint is not added to the working set at the

next iterate, which is automatically a minimizer with respect to the same working

set (see the logic for constraint addition in Figure 2). If a new iterate happens to be

a stationary point under any other circumstances, we now show that the multiplier
corresponding to the newly added constraint must be strictly positive.

Lemma 4.8. Assume that z is a typical intermediate iterate, with associated work-
ing set A, under the same conditions as in Lemma 4.5. Let £ = z 4+ ap, where
a > 0 and constraint a is added to the working set at Z, and let A denote the new
working set. If T is a stationary point with respect to A, then the Lagrange multiplier
associated with the newly added constraint is positive.

Proof. If Z is a stationary point with respect to A, we have by definition that
G = ATua + apq, where p, is the multiplier corresponding to the newly added
constraint. Since the conditions of this lemma are the same as those of Lemma 4.5,

~vea. = AT\ + psa, where v, >0 (4.25)

(see (4.21)). Lemma 4.2 and Theorems 4.1-4.3 show that alp > 0 at every in-
termediate iterate. Since constraint a is added to the working set, we know that
a”p < 0. Relation (4.25) shows that —v,aTp = u.aTp, and we conclude that Ba >0
as desired. @

“J
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4.4. Choosing the initial working set

Inertia-controlling methods require a procedure for finding an initial working set Aq
that has full row rank and an associated positive-definite reduced Hessian ZJH Z,,.
Two different inertia-controlling methods starting with the same working set Ag
will generate identical iterates. However, procedures for finding Ag are usually
dependent on the method used to solve the KKT system and therefore Ag may vary
substantially from one method to another. Ironically, this implies that different
inertia-controlling methods seldom generate the same iterates in practice!

In order to ensure that the reduced Hessian is positive definite, the initial work-
ing set may need to include “new” constraints that are not specified in the original
problem. These have been called temporary constraints, pseudo-constraints (Fletcher
and Jackson [FJ74]), or artificial constraints (Gill and Murray [GM78]). The only
requirement for a temporary constraint is linear independence from constraints al-
ready in the working set. The strategy for choosing temporary constraints depends
on the mechanics of the particular QP method.

For example, simple bounds involving the current values of variables are conve-
nient in certain contexts (see, e.g., Fletcher and Jackson [FJ74]). Suppose that the
value of the first variable at the initial point is (say) 6. The temporary constraint
zy 2 6 (or —z; > —6) may be added to the initial working set if its normal satisfies
the linear independence criterion. If this temporary bound is included, the first
variable is fixed at 6 until a minimizer is reached. At a minimizer, the sign of each
temporary constraint normal (i.e., the direction of the inequality) is chosen so that
its multiplier is nonpositive, and temporary constraints are deleted first if there is
a choice.

Since a reduced Hessian of dimension zero is positive definite, the earliest ap-
proach was always to choose an initial working set of n constraints, regardless of the
nature of the reduced Hessian (see Fletcher [Fle71} and Gill and Murray [GM78]}).
However, this strategy may be inefficient because of the nontrivial effort that must
be expended to delete all the temporary constraints.

Ideally, the initial working set should be well conditioned and contain as few
temporary constraints as possible. A strategy that attempts to fulfill these aims
is used in the method of QPSOL [GMSW84c]. Let A’ denote the subset of rows
of A corresponding to the set of constraints active at zo. A trial working set (the
maximal linearly independent subset of the rows of A’) is selected by computing
an orthogonal-triangular factorization in which one row is added at a time. If the
diagonal of the triangular factor resulting from addition of a particular constraint
is “too small”, the constraint is considered dependent and is not included.

Let Ay denote the resulting trial working set, with Z,, a null-space basis for
Aw. It ZLH Z,, is positive definite, Ay is an acceptable initial working set, and Agp
is taken as Ay. Otherwise, the requisite temporary constraint normals are taken as
the columns of Z,, that lie in the subspace spanned by the eigenvectors associated
with the nonpositive eigenvalues of ZL H Z,,. With the T'Q factorization (see (6.1)),
these columns can be identified by attempting to compute the Cholesky factorization
of ZL HZ,, with symmetric interchanges (for details, see Gill et al. [GMSW85)).
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In contrast, methods that rely on sparse factorizations to solve KKT-related
systems explicitly (see Section 5.1) have more difficulty in defining Ao efficiently,
and no methods are known that attempt to minimize the number of temporary
constraints.

In practice, the task of finding Ao is often complicated by the desirability of
specifying a “target” initial working set. For example, the QP may occur as a
subproblem within an SQP method for nonlinearly constrained optimization with a
“warm start” option; see Gill et al. [GMSW386).

4.5. Convergence

In all our discussion thus far, we have repeatedly assumed at various crucial junc-
tures that & > 0, because of the following theoretical (and practical) difficulty. A
degenerate stationary point for (1.1) is a point at which the gradient of ¢ is a linear
combination of the active constraint normals, but the active constraints are linearly
dependent. (A degenerate vertex is the most familiar example of such a point.) A
degenerate stationary point poses difficulties for an algorithm in which constraints
are deleted and added one at a time because the algorithm may cycle. Although
a feasible direction of decrease can be found by deleting a single constraint, the
algorithm may be unable to move because each search direction p has the property
that ap < 0 for an idle (dependent) constraint i, which means that the step to the
nearest constraint is zero. In order to proceed, it may be necessary to move “off”
several constraints simultaneously, thereby violating the inertia-controlling strategy.
For a discussion of techniques for moving away from degenerate stationary points,
see Fletcher [Fle85,Fle86], Busovata [Bus85], Dax [Dax85], Osborne [Osb85), Ryan
and Osborne [RO86] and Gill et al. [GMSW].

Proofs of convergence for inertia-controlling methods if no degenerate stationary
points exist have been given in [Fle71,Fle81,GM78,Gou86]. We therefore simply
state the result.

Theorem 4.4. If p(z) is bounded below in the feasible region of (1.1) and the feasi-
ble region contains no degenerate stationary points, an inertia-controlling algorithm
converges in a finite number of iterations to a point  where

(i) ZTg =0, ZTH Z is positive definite and u > 0; or
tii) ZTg =0, ZTHZ is singular and p > 0. 8

5. The Formulation of Algorithms

Given the same initial working set, inertia-controlling methods generate mathemati-
cally identical iterates. Practical inertia-controlling methods differ in the techniques
used to determine the nature of the reduced Hessian and to compute the search di-
rection and Lagraage multipliers.
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5.1. Using a nonsingular extended KKT system

When solving a general QP with an inertia-controlling method, the “real” KKT ma-
trix may be singular for any number of iterations. In this section, we show how to
define the vectors of interest in terms of linear systems involving a nonsingular ma-
trix that (optionally) includes the normal of the most recently deleted constraint—
in effect, an “extended” KKT matrix. Fletcher’s original method (Fle71} uses the
approach to be described, although he describes the computations in terms of a
partitioned inverse. Any “black box” equation solver that provides the necessary
information may be used to solve these equations (see, e.g., Gould {Gou86] and Gill
et al. [GMSW]).

At a given iterate, let A, denote either the current working set 4 or a matrix
of full row rank whose i.-th row is a, (the most recently deleted constraint) and
whose remaining rows are those of A. (If A. = A, i, is taken as zero.) The row
dimension of A, is denoted by m,, which is m when A, = A and m+1 when A, # A.
Let Z and Z, be null-space bases for A and A,. The inertia-controlling strategy
guarantees that the reduced Hessian ZT H Z, is positive definite. We allow A, to
be A only when ZTH Z is positive definite, in order to guarantee its nonsingularity
at intermediate iterates. (Recall that ZTHZ can change from indefinite to singular
following a constraint addition.) However, it may be convenient to retain a. in A.
even in the positive-definite case.

The matrix X, is defined as

K.=(f‘ Az), (5.1)

and we emphasize that K, must be nonsingular (see Corollary 3.1). Let u, v, y and
w be the (unique) solutions of

PR ORO
(ZA)-() -

where u and y have n components, v and w have m, components, and e, denotes
the i,-th coordinate vector of dimension m,. When K, = K, y and w may be taken
as zero. Any vector name with subscript “A” denotes the subvector corresponding
to columns of A7, and similarly for the subscript “+”. If i, = 0, the i,-th component
of a vector is null.

The vectors q and p associated with the KKT system (2.7) satisfy

Hq+ATu=g, Aq=0, (5.4)

so that ¢ = u of (5.2) when K = K.. In an inertia-controlling method, the search
direction p is taken as —q in the positive-definite case (see (4.1)), as y in the singular
case or in the indefinite case with a zero multiplier (see (4.2) and (4.4)), or as q (see
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(4.3)). Thus, p is available directly from (5.2) or (5.3) in two situations: when
K. = K, in which case p must be —q since ZTHZ is positive definite; or when
P = ¥. The next lemma shows how to obtain ¢ and u from the vectors of (5.2) and
(5.3) when K, # K.

Lemma 5.1. If K i3 nonsingular and K, # K, the vectors ¢ and u are given by

g =u+py (5.5)
U =v4+Pw,, where B=-—v,/w,. )
Proof. Writing out the equations of (5.2) and (5.3), we have
Hu+ ATv,+av. =g, Au=0, alu=0;
Hy+ATwA+aaw- =0, Ay=0, a?y= L
For any scalar 3, the vectors ¢’ = u + By and v' = v + Bw satisfy
Hu' + AT, + au(va + Bw) =g and AT =0. (5.6)

Both K and K. are nonsingular, which implies that w,. # 0 (see Corollary 3.3). If
B is chosen as —v,/w,, the coefficient of a. in (5.6) is zero, and ' and v/, satisfy
(5.4). The desired result follows from the uniqueness of g and . @

When K, # K, the following two lemmas indicate how to use u, v, y and w to
decide on the status of the reduced Hessian and of the current iterate.

Lemma 5.2. Assume that K. # K. Then: (a) ifw, < 0, ZTH Z is positive definite;
(b) if w. =0, ZTH Z is singular; and (c) if w. > 0, ZTH Z is indefinite.

Proof. Since A, is chosen so that ZT HZ, is positive definite, the results follow
from Corollary 3.3. &

Lemma 5.3. Assume that K. # K. The point z is a stationary point with respect
toAifu=0andv, =0.

Proof. The result is immediate from the definition of u and v. §

5.1.1. Updating u, v, w and y

The next four lemmas specify how u, v, y and w can be recurred from iteration to
iteration. Note that “old” and “new” versions of u and y always have n components.

Lemma 5.4. (Move to a new iterate.) Suppose that z is an iterate of an inertia-
controlling method. Let £ = z + ap. The solution of

(5 )

(5.7)
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where § = g(€) = ¢ + aHp, is given by

(1-ea)u (1-aj. ifp=-—g
@ = { (l+a)u, & ={ (1+ap. ifp=g (5.8)
u v. — aw, ifp=y .
ta = va-—a(alp)w,.

Proof. In this lemma. the move from z to £ changes only the gradient (not the
working set). The desired result can be verified by substitution from Lemma 5.1
and the various definitions of p. 1

Following the addition of a constraint (say, a) to the working set, the “real”
reduced Hessian may become positive definite, so that strictly speaking a. is no
longer necessary. Nonetheless, it may be desirable to retain a, in A, for numerical
reasons; various strategies for making this decision are discussed in [Fle71]. Updates
can be performed in either case, using the n-vector z and m,-vector t defined by

(x ©)()-(5)

Hz+ ATty + t.a.=a, Az=0 and afz=0. (5.10)

i.e., such that

We first consider the case when a can be added directly to A,. Following the
updates given in the next lemma, m, increases by one and the “new” v and w have
one additional component.

Lemma 5.5. (Constraint addition; independent case.) Let z denote an iterate of
an inertia-controlling method. Assume that constraint a is to be added to the working
set at z, where AT and a are linearly independent. Let

a’u aTy
p= a—Tz and n= E (5.11)

Then the vectors i, b, § and w defined by

) (5.12)

. (5.13)
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If A, = A, y and w have dimension zero, and are not updated.
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Proof. When a and AT are linearly independent, (5.10) shows that z must be
nonzero. Since A,z = 0 and ZT HZ, is positive definite, aTz = zTHz > 0, so that p
and 7 are well defined.

For any scalar p, (5.2) and (5.10) imply that

H AT a u-— pz g
A, v-pt | = 0 . (5.14)
aT p a’u — pa”z

The linear independence of a and AT means that the solution vectors of (5.13) are
unique. By choosing p so that the last component of the right-hand side of (5.14)
vanishes, we see that # and ¥ of (5.12) satisfy the first equation of (5.13). A similar
argument gives the updates for §y and w.

If ZTH Z is positive definite and K, # K, a. can be deleted from A,, and K.
then becomes K itself. The following lemma may be applied in two situations:
when a constraint is deleted from the working set at a minimizer and the reduced
Hessian remains positive definite after deletion; and at an intermediate iterate after
a constraint has been added that makes ZTH Z positive definite.

Lemma 5.8. (Deleting a. from A..) Suppose that: z is an iterate of an inertia-
controlling method, K. # K, and ZTH Z is positive definite. Then the vectors i and
¥ defined by

t=u+(y, V4=v,+(w,, where (= —1—:,;'—, (5.15)
satisfy
Hi+ATs=g, Aa=0. (5.16)

Proof. Let v’ = u+ (y, v' = v+ (w for some scalar (. Substituting these values
in (5.2), we have

H(u+ Cy)+ AT(va + Cwa) + au(v + (wi) = 9.

It follows that (5.16) will be satisfied by u' and v/, if v. + (w, = 0. It is permissible
to delete a. from A, only if ZTH Z is positive definite, which means that w. < 0,
and hence ( is well defined. @

Note that y and w are no longer needed to define the search direction after a.
has been removed.

The only remaining possibility occurs when a, the constraint to be added, is
linearly dependent on AT; in this case, z = 0 in (5.9). We know from Lemma 4.5
that the iterate just reached must be a minimizer with respect to the working set
composed of AT and a, which means that a, is no longer necessary. However, it
is not possible to update u using Lemma 5.5 (because a7z = 0), nor to apply
Lemma 5.6 (because w. may be zero). The following lemma gives an update that
simultaneously removes a, from A, and adds a to the working set. After application
of these updates, A is the “real” working set at £, and the algorithm either terminates
or deletes a constraint (which cannot be a; see Lemma 4.6).
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Lemma 5.7. (Constraint addition; dependent case.) Suppose that x is an iterate
of an inertia-controlling method and that K. # K. Assume that a is to be added
to the working set at x, and that a and AT are linearly dependent. Let A denote A
with aT as an additional row, and define w = v./t,. The vectors @ and ¥ specified
by

G=0, D,=v,-wt,, ¥,=w, (5.17)

where ©, denotes the component of ¥ corresponding to a, satisfy

B e

Proof. First, observe that linear dependence of AT and a means that z = 0.
Lemma 2.1 shows that a cannot be linearly dependent on AT, which implies that
t. # 0. Lemma 4.5 tells us that £ must be a minimizer with respect to a working
set, so that ii = 0. The desired results follow from substitution. @

The following lemma mentions a further efficiency that may be achieved once a
minimizer has been reached.

4]

]

Lemma 5.8. If an iterate = is a minimizer with respect to A, the vector u is zero
Jor all subsequent iterations.

Proof. When z is a minimizer with respect to a working set A, g is a linear
combination of the columns of AT, so that u = 0. The result of the lemma follows
by noting that none of the recurrence relations for u alters this value. Hence, only
v, ¥ and w need to be stored and updated thereafter. @

The following theorem summarizes the algorithmic implications of all these re-
sults.

Theorem 5.1. In an inertia-controlling method based on using a nonsingular ma-
triz K. as described, the linear system (5.2) needs to be solved ezplicitly for u and v
only once (at the first iterate); these vectors can thereafter be updated. The veciors
y and w must be computed by solving (5.8) at each minimizer, since w is used to
determine the nature of the reduced Hessian when a constraint is deleted; y and w
may be updated when a constraint is added to the working set. The vectors z and
t must be computed by solving (5.9) whenever a constraint is added to the working
set. Wl

Figures 4 and 5 specify the computations associated with deleting and adding a
constraint (the boxed portions of Figures 1 and 2).

For simplicity, two special circumstances are not shown: in Figure 4, a, is always
deleted from A, when y. = 0 and the reduced Hessian remains positive definite after
deletion, to allow the algorithm to proceed if another constraint is deleted; and if
A. = A in Figure 5, it is not necessary to test the nature of the reduced Hessian,
which must be positive definite.

—
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a. — a,; A, ~ A;
compute y and w by solving (5.3);
determine the nature of Z7HZ (Lemma 5.2);
if positive_definite then
(optionally) delete a. from A,;
update u and v (Lemma 5.6);
end if

Figure 4: Deleting constraint a, from the working set.

solve (5.9) to obtain 2 and t;
if z # 0 then
add a to A,; update u, v, y and w (Lemma 5.5);
determine the nature of ZTHZ (Lemma 5.2);
if positive_definite then
(optionally) delete a. from A,;
update v and v (Lemma 5.6);
end if
else (z = 0)
remove a, from A, and add a to the working set;
update u and v (Lemma 5.7);
positive_definite — true;
end if

Figure 5: Adding constraint a to the working set.

Two Specific Methods

Updating an explicit positive-definite reduced Hessian

4Q.=A.(z. v.)=(0 1),

In this section we give details concerning the factorizations used in implementing two
specific inertia-controlling methods. The method of Section 6.1 is based directly on
the recurrence relations of Section 5, and always retains a positive-definite reduced
Hessian. In contrast, the method of Section 6.2 updates a reduced Hessian that is
allowed to be positive definite, singular or indefinite.

We now discuss an algorithm in which factorizations of A, and of the (necessarily
positive definite) matrix ZT / Z, are used to solve the equations given in Section 5.1.
We consider factorizations of A, of the form

(6.1)
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where T is a nonsingular m. X m,. matrix, Q. is an n X n nonsingular matrix, and
Z. and Y, are the first n — m. and last m, columns of Q.

Representing A, by this factorization leads to simplification of the equations to
be solved. In many implementations, (). is chosen so that T is triangular (see, e.g.,
Gill et al. [GMSW84a]). In the reduced-gradient method, Q. is defined so that T
is the usual basis matrix B. The columns of Z, form a basis for the null space of
A.. The columns of Y, form a basis for the range space of AT only if YTZ, = 0.

Let n; = n — m,. Let Q denote the (nonsingular) matrix

o-(* ).

where I is the identity of dimension m,. The n;-vector u, and the m,-vector uy
are defined by

u=Q. ( Yz ) = Z.uz + Y,u,. (6.2)
Uy
Similarly,
Yz 2z
y-_-Q,( ) and z=Q.( ) (6.3)
Yy 2y

Multiplying (5.2) by QT and substituting from (6.1) and (6.2), we obtain

(%0 )0)-(%)0)-

ZTHZ, ZTHY, 0© Uz 27g
YIHZ, YTHY, TT u | =] YT |. (6.4)
0 T v 0

Since T is nonsingular, the third equation of the partitioned system (6.4) implies
that uy, = 0, so that u and v are obtained by solving

ZTHZ u, =279, Tho=YTg+YTHZ.u,, (6.5)
and setting v = Z,u;. The vectors z and t of (5.9) can similarly be found by solving
ZTHZ,2; =2Ta, TN=YXa+YIHZ.2;, (6.6)

and setting 2 = Z,z;.

We also need to compute the vectors y and w of (5.3) at a minimizer. Applying
the same transformation as above and substituting from (6.3) gives the following
equations to be solved:

Tyy =e., ZTHZ,y,=-2ZTHY,yy, TTw=-YTHy, (6.7)

where y = Z.y; + Y.yy.

M
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By construction, the reduced Hessian ZT H Z, is positive definite; let its Cholesky

factorization be
Z2THZ, = RTR,, (6.8)

where R, is an upper-triangular matrix. An obvious strategy for a practical imple-
mentation is to retain the matrices T, Z. and Y. and the Cholesky factor R,. As
the iterations proceed, T', Z, and Y, can be updated to reflect changes in A,, using
Householder transformations or plane rotations if Q is orthogonal, and elementary
transformations if Q is non-orthogonal; orthogonal transformations are needed in
part of the update for R, (see Gill et al. [GMSW84a)).

For illustration, we sketch a particular updating technique in which T is chosen
as upper triangular. In this discussion, barred quantities correspond to the “new”
working set. When a conctraint a added to the working set, a becomes the first
row of A,. To restore triangular form, we seek a matrix Q that annihilates the first
m. — 1 elements of a7Q., i.e., such that

a7Q.Q = ( a’Z, a7Y, )Q = ( 0 o aTv, ) . (6.9)

This result is achieved by choosing Q of the form

g=(%° (6.10)
Ko 1/’ '

where the m, X m, matrix P is composed of a sequence of orthegonal or elementary
transformations. Substituting from (6.10) into (6.9), we have

PTzTq = ge,,, (6.11)

where e, is the n;-th coordinate vector. The result is that

Qt=QtQ=(ZmP Y.)-_’(Z-. Yt))
where '
ZP=(2.3), (6.12)

and Y. is Y. with a new first column (the transformed last column of Z,).

When a constraint is deleted from A,, the deleted row is moved to the first
position by a sequence of cyclic row permutations, which need be applied only to T
and Y,. (The columns of Z, are orthogonal to the rows of A, in any order.) The
first row of A, may then be removed and the permuted triangle restored to proper
form by transformations on the right without affecting the last m, — 1 columns of
Q. or T. The result is that Y, is a row-permuted version of the last m, — 1 columns
of Y., and Z, is given by

Z.=(2z z), (6.13)

where Z is a transformed version of the first column of Y,.

—_
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This updating scheme leads to additional computational simplifications. For
example, consider calculation of z and t from the first equation of (6.6) when a
constraint is added to A.. Multiplying by PT, substituting from (6.11), and letting
3= P72, 7 = Z.P, we have

ZTHZ: = Z%a = ge,,. (6.14)

The Cholesky factors RTR of ZTH Z will be available from the updating (see (6.12)),
and the special form of the right-hand side of (6.14) means that the solve with the
lower-triangular matrix RT reduces to only a single division.

6.2. Updating a general reduced Hessian

In this section we briefly discuss the method of QPSOL [GMSW84c|, an inertia-
controlling method based on maintaining an LDLT factorization of the reduced

Hessian
ZTHZ = LDLT, (6.15)

where L is unit lower triangular and D = diag(d;). When Z7H Z can be represented
in the form (6.15), Sylvester’s law of inertia (3.4) shows that In (ZTHZ) = In (D),
and our inertia-controlling strategy thus ensures that D has at most one non-positive
element. The following theorem states that, given a suitable starting point, a null-
space matrix Z exists such that only the last diagonal of D may be non-positive.

Theorem 6.1. Consider an inertia-controlling method in which the initial iterate
zo is a minimizer. Then at every subsequent iterate there erist an upper-triangular
matriz T, a unit lower-triangular matriz L, a diagonal matriz D and a null-space
matriz Z with nz columns such that

A(z v)=(oT),

2THZ = LDLT,
2Tg = oen;, (6.16)
whered; >0 forj=1,...,nz — 1, and e,, is the n;-th coordinate vector.

Proof. An analogous result is proved by Gill and Murray [GM78] for a permuted
form of the TQ factorization. §

We emphasize that the vector ZTg has the simple form (6.16) only when the T'Q
factorization of A is updated with elementary or plane rotation matrices applied in
a certain order. In this sense, the method depends critically on the associated linear
algebraic procedures.

The search direction p is always taken as a multiple of Zp,, where p; is the
unique nonzero vector satisfying

LTp; = ey,. (6.17)

The special structures of D and the reduced gradient are crucial to the following
theorem.
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Theorem 6.2. Assume that the results of Theorem 6.1 hold, and that Z, L and
D are the corresponding matrices. Let p; be the solution of LTp, = en,. Then the
vector p = Zp; is a multiple of q of (5.4) if ZTg # 0 and d,, # 0, and is a multiple
of y of (5.3) if either (a) ZTg # 0 and dn, = 0, or (b) ZTg = 0 and d,, < 0.

Proof. In all cases, the definition (6.17) of pz and the structure of L and D imply
that
LDLTp; = d, e,,. (6.18)

First, assume that ZTg # 0 and d,,, # 0, so that ZTH Z is nonsingulzr and ¢ is
unique. Recall that ¢ = Zgq,, where ZTHZq, = ZTg. We know from Theorem 6.1
that ZTHZ = LDLT and Z7g = oe,,, with 0 # 0 by hypothesis. Relation (6.18)
and the uniqueness of p and ¢ thus imply that each is a multiple of the other, as
required.

We now treat the second case, ZTg # 0 and d,, = 0, so that ZTH Z is singular.
The vector y of (5.3) can be written as y = Zyz, where y; is a nonzero vector
satisfying ZTH Zy; = 0. (Recall that ZTH Z has exactly one zero eigenvalue.) Since
d,, =0, (6.18) gives

LDLTp, = ZTHZp; = 0,

as required.

Finally, assume that ZTg = 0 and d,, < 0, which occurs when the reduced
Hessian becomes indefinite immediately following deletion of a constraint with a zero
multiplier. Let a. be the normal of the deleted constraint with the zero multiplier.
The vector y of (5.3) is given by y = Zy,, where y;, satisfies

ZTHZy, = ~w.ZTa. and aTy=1, (6.19)

with w, > 0. The nature of the updates to Z following a constraint deletion (see
(6.13)) shows that the vector Z7a, is given by

ZTa, = te,,, (6.20)

where £ = al 2, with 7 the new column of Z created by the deletion of a,. Because

of the full rank of the working set, £ # 0. Thus, y, satisfies
ZTHZy, = -w.te,, #0. (6.21)

It follows from (6.18) that either p or —p is a direction of negative curvature,
since

P Hp= pIZTHsz =d,, <0.

If the sign of p,, (the last component of p;) is chosen so that
aTP = GTZPz = fpn. >0,

then examination of (6.18), (6.19) and (6.21) implies that p is a multiple of y, as
required. W
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7. Conclusions and Topics for Further Research

This paper has explored in detail the nature of a family of methods for general
quadratic programming. Our aims have been to describe the overall “feel” of an ide-
alized active-set strategy (Section 2), to provide theoretical validation of the inertia-
controlling strategy (Section 3), to formulate in a uniform notation the equations
satisfied by the search direction (Section 4), and to discuss selected computational
aspects of inertia-controlling methods (Section 5 and Section 6).

Many interesting topics remain to be explored, particularly in the efficient im-
plementation of these methods. For example, the method of Section 6.1 is identical
in motivation to Fletcher’s original method [Fle71], but has not been implemented
in the form described, which avoids the need to update factors of a singular or
indefinite symmetric matrix. Various methods for sparse quadratic programming
could be devised based on the equations of Section 5.1, in addition to those already
suggested by Gould [Gou86] and Gill et al. [GMSW].

As noted in Section 4.4, an open question remains concerning the crucial task
of finding an initial working set in an efficient fashion consistent with the linear
algebraic procedures of the main iterations.
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